Constraining the Neutron Star Mass and Radius Relation

Supervisor: David Edwin Alvarez-Castillo
Students:
Mihaela Parvu
Kristian Vitovsky
Asiyat Gulayeva

Outline

\rightarrow Neutron stars. Formation. Characteristics
\rightarrow Formalism used in the study of neutron stars
\rightarrow Mass-Radius diagram
\rightarrow Conclusions
\rightarrow Perspective

Neutron Star in Canada

NEUTRON STARS

- Collapsed core of massive stars.
- They result from the supernova explosion of a massive star, combined with gravitational collapse, that compresses the core past the white dwarf star density to that of atomic nuclei.
- Smallest and densest stars known to exist.
- Mass: $M>1.4 M_{\text {sun }}$
- Radius: $r \approx 7-10 \mathrm{~km}$
- Density: $\rho \approx 10^{14} \div 10^{15} \mathrm{~g} / \mathrm{cm}^{3}$

SIZE AND NUMBER OF BARYONS IN A STAR

Limit of gravitational collapse: $\mathbf{R}=\mathbf{2 M}$

Gravity packs nucleons up to their repulsive cores:

$$
r_{0} \approx 0.5 \times 10^{-13} \mathrm{~cm}
$$

$$
\begin{aligned}
& R \approx r_{0} \cdot A^{1 / 3}, M \approx A \cdot m \\
& m \approx 939 \mathrm{MeV}=1.7 \times 10^{-24} \mathrm{~g}=1.2 \times 10^{-52} \mathrm{~cm}
\end{aligned}
$$

$$
2 M=r_{0} \cdot A^{1 / 3}
$$

$$
G=c=k_{B}=1
$$

$$
2 A m=r_{0} \cdot A^{1 / 3}
$$

$$
c=2.9979 \times 10^{10} \mathrm{~cm} / \mathrm{s}
$$

$$
A=2.99 \cdot 10^{57}
$$

$$
G=6.672 \times 10^{-8} \mathrm{~cm}^{3} \mathrm{~g}^{-1} \mathrm{~s}^{-2}
$$

$$
R=7.2 \mathrm{~km}
$$

$$
k=1.3807 \times 10^{-16} \mathrm{erg} / \mathrm{K}, 1 \mathrm{erg}=10^{-7} \mathrm{~J}
$$

$M=\frac{R}{2}=3.6 \mathrm{~km}=2.438 M_{\text {sun }}$

HYDROSTATIC EQUILLIBRIUM

Newtonian Formulation

m is the mass interior to r, then conservation of mass implies that: $\quad d m=4 \pi r^{2} \rho d r$

$$
\frac{d m}{d r}=4 \pi r^{2} \rho
$$

Consider small cylindrical element between radius r and radius $r+d r$ in the star.

Gravity(inward): $\quad F_{g}=-G \frac{m M}{r^{2}}$

M
Pressure (net force due to difference in pressure between upper and lower faces): $\quad \boldsymbol{F}_{p}=P(r) d S-P(r+d r) d S=$

$$
\begin{aligned}
& =P(r) d S-\left[P(r)+\frac{d P}{d r} d r\right] d S= \\
& =-\frac{\boldsymbol{d} \boldsymbol{P}}{\boldsymbol{d} \boldsymbol{r}} \boldsymbol{d} \boldsymbol{r} \boldsymbol{S} \boldsymbol{S}
\end{aligned}
$$

HYDROSTATIC EQUILLIBRIUM

$$
\begin{aligned}
& d m \ddot{r}=F_{g}+F_{p}=-G \frac{m M}{r^{2}}-\frac{d P}{d r} d r d S \\
& \text { If the star is static }: \Rightarrow \ddot{r}=0 \\
& -G \frac{M \rho d r d S}{r^{2}}-\frac{d P}{d r} d r d S=0
\end{aligned}
$$

Equation of hydrostatic equilibrium:

$$
\frac{d P}{d r}=-G \frac{M \rho}{r^{2}}
$$

$$
\begin{aligned}
& \epsilon=\rho c^{2}, \epsilon=\text { energy density } \\
& \frac{\boldsymbol{d} \boldsymbol{P}}{\boldsymbol{d r}}=-\boldsymbol{G} \frac{\boldsymbol{M} \boldsymbol{\epsilon}}{\boldsymbol{r}^{2} \boldsymbol{c}^{2}}
\end{aligned}
$$

Equation of State

$$
\begin{array}{ll}
E_{\text {tot }}\left(n, x_{i}\right)=E_{b}\left(n, x_{p}\right)+E_{\text {lep }}\left(n, x_{e}, x_{\mu}\right) & n=n_{p}+n_{n} \\
E_{b}\left(n, x_{p}\right)=E_{0}(n)+S\left(n, x_{p}\right) & x_{i}=\frac{n_{i}}{n} \\
E_{\text {lep }}\left(n, x_{e}, x_{\mu}\right)=E_{e}\left(n, x_{e}\right)+E_{\mu}\left(n, x_{\mu}\right) &
\end{array}
$$

- For describing the baryonic part we need to consider the assymetry term: $\alpha=\frac{n_{n}-n_{p}}{n_{n}+n_{p}}=1-2 x_{p} \quad S\left(n, x_{p}\right)=\left(1-2 x_{p}\right)^{2} E_{s}$
- For describing lepton's contribution:
$E_{l}\left(n, x_{l}\right)=\frac{1}{n} \frac{p_{F, l}^{4}}{4 \pi^{2}}\left[\sqrt{1+z_{l}^{2}}\left(1+\frac{z_{l}^{2}}{2}\right)-\frac{z_{l}^{4}}{2} \arcsin \left(\frac{1}{z_{l}}\right)\right]$
$\left.E_{l}\left(n, x_{l}\right)\right|_{m_{l}=0}=\frac{1}{n} \frac{p_{F, l}^{4}}{4 \pi^{2}}=\frac{3}{4}\left(3 \pi^{2} n\right)^{1 / 3} x_{l}^{4 / 3} \quad z_{l}=m_{l} / p_{F, l}$
- Total pressure: $\quad P(n)=n^{2}\left(\frac{\partial E_{\text {tot }}}{\partial n}\right)$
- Beta equilibrium: $\mu_{n}-\mu_{p}=\mu_{e}=\mu_{\mu}$
- Charge neutrality: $x_{p}=x_{e}+x_{\mu}$

Tolman-Oppenheimer-Volkoff equation + E.O.S.

$$
\begin{aligned}
& \frac{d P}{d r}=-\frac{\left(\rho+p / c^{2}\right) G\left(m+4 \pi r^{3} p / c^{2}\right)}{r^{2}\left(1-2 G m / r c^{2}\right)} \\
& \frac{d m}{d r}=4 \pi r^{2} \rho
\end{aligned}
$$

$$
p(\rho) \text { or } p(\epsilon)
$$

- Initial condition: $p\left(\rho_{c}\right)=p_{c}$
- Boundary conditions:

$$
\begin{aligned}
& p(r=R)=0 \\
& M(r=0)=0
\end{aligned}
$$

Tolman-Oppenheimer-Volkoff equation + E.o.S. - Mass-Radius Diagram

Constraints

- $2 M_{\text {sun }}$ observed
- Fastest rotation observed
- Causality
- Calculated maximum mass

Phase Transitions

- Limit conditions:
$P^{I}=P^{I I} ; \mu_{n}{ }^{I}=\mu_{n}{ }^{I I} ; \mu_{e}{ }^{I}=\mu_{e}{ }^{I I}$

Phase Transitions

Internal Profiles

CONCLUSIONS

- Phase transitions are evidence of the existence of different layers in the structure of neutron stars
- We used nuclear models to describe astronomic bodies and it is in concordance with observations
- In order to have a perfect model for describing neutron stars we need more experimental measurements and astrophysical observations

THE FUTURE WILL BE „NICER"

- Mass and radius determinations with unprecedented precision.
- NICER's results will discriminate between dozens of proposed "equation of state" theoretical models

References

- Neutron Stars for Undergraduates - Richard R. Silbar and Sanjay Reddy, https://arxiv.org/abs/nucl-th/0309041v2
- Lev Landau and the conception of neutron stars - Dmitry G. Yakovlev, Pawel Haensel, Gordon Baym, Christopher J. Pethick, https://arxiv.org/abs/1210.0682v1
- Compact Objects for Everyone: A Real Experiment - C.B. Jackson, J. Taruna, S.L. Pouliot, B.W. Ellison, D.D. Lee, and J. Piekarewicz, https://arxiv.org/abs/astro-ph/0409348v1
- High-mass twin stars with a multi-polytrope EoS - D.E. Alvarez-Castillo, D.B. Blaschke, https://arxiv.org/abs/1703.02681

THANK YOU FOR ATTENTION!

